Bacterial Vaginosis Is Associated with Variation in Dietary Indices1,2

Marie E. Thoma,3* Mark A. Klebanoff,3,7 Alisha J. Rovner,3 Tonja R. Nansel,3 Yasmin Neggers,4 William W. Andrews,5 and Jane R. Schwebke6

3Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD; 4Department of Human Nutrition, University of Alabama, Tuscaloosa, AL; and 5Department of Obstetrics and Gynecology, and 6Department of Medicine, University of Alabama, Birmingham, AL

Abstract

Bacterial vaginosis (BV) is a common condition of unknown etiology and has been linked to adverse reproductive and obstetric health outcomes. Prior dietary research on BV has focused on specific macro- and micronutrients, but not dietary indices. We assessed the relationship between BV and selected dietary indicators among a cohort of 1735 nonpregnant women ages 15–44 y from Birmingham, Alabama. Annual intake was assessed with the Block98 FFQ, and the glycemic index (GI), glycemic load (GL), and Healthy Eating Index were calculated by the Block Dietary Data System. The Naturally Nutrient Rich (NNR) score was also calculated. Vaginal flora was evaluated using Nugent Gram-stain criteria. Crude OR and adjusted OR were determined by multinomial and logistic regression in cross-sectional and prospective analyses, respectively. Participants were predominantly African American (85.5%) aged 25.3 ± 6.8 y (mean ± SD). Per 10-unit increase, GL was positively (adjusted OR = 1.01, 95% CI = 1.00–1.03) and NNR was negatively (adjusted OR = 0.93, 95% CI = 0.88–0.99) associated with BV compared to normal vaginal flora. In prospective analyses, only GL was associated with BV progression (adjusted OR = 1.03, 95% CI = 1.00–1.05) and persistence (adjusted OR = 1.02, 95% CI = 1.01–1.04) after adjustment. Both GL and NNR were associated with greater BV prevalence and GL was associated with an increase in BV persistence and acquisition. These results suggest that diet composition may contribute to vaginal flora imbalances and be important for elucidating the etiology of BV. J. Nutr. doi: 10.3945/jn.111.140541.

Introduction

BV8 is the most frequent cause of vaginal complaints among reproductive-aged women and is characterized by an imbalance in the vaginal flora, with the replacement of Lactobacillus species by anaerobic bacteria and a corresponding increase in vaginal pH (>4.5) (1). In the United States, the prevalence of BV varies by ethnicity, with African American women having over 2 times higher prevalence of BV (51%) compared to white women (23%) (2). In addition, BV has considerable adverse reproductive and obstetric health consequences for women and their infants, including low birth weight, preterm birth, pelvic inflammatory disease, and HIV and other sexually transmitted infections (3). Despite the high prevalence of BV and adverse sequelae, its etiology remains poorly understood.

Although BV is related to sexual activity, its development may also depend on other nonsexual risk factors that make women more susceptible to vaginal flora imbalances. A growing body of evidence has emerged on the association between diet and nutritional status with BV (4–7), but the mechanisms remain unclear (8). Several studies have found associations between BV and poor micronutrient status, including vitamins A, C, E, and D and β-carotene (5,7) as well as low dietary intakes of folate, calcium, and vitamin E (4). LSVF previously assessed the association between macronutrient intake and BV in 1520 predominantly African American women 15–44 y of age and found an increased risk of BV among women with higher energy and total fat consumption (4). However, diets high in total energy and fat are often indicative of overall poorer diet quality; therefore, studying the relationship between individual nutrients and BV may be misleading due to the high correlations among nutrients within diets (9,10).

In recent years, the field of nutrition has shifted toward examining dietary indices as opposed to single nutrients, because it has become recognized that nutrients are not consumed in isolation, that individuals consuming one health-promoting nutrient also tend to consume many others, and that the specific source of nutrients may be of importance (11,12). In addition, dietary indices address the issue of multicollinearity of nutrients and may provide a better understanding of the relationship

1 Supported by the Intramural Research Program of the NIH, Eunice Kennedy Shriver National Institute of Child Health and Human Development and contract N01-HD-8-3293.

3 Present address: Nationwide Children’s Hospital, Columbus, OH.

4 Abbreviations used: BV, bacterial vaginosis; GI, glycemic index; GL, glycemic load; HEI, Healthy Eating Index; LSVF, Longitudinal Study of Vaginal Flora; NNR, Naturally Nutrient Rich.

5 To whom correspondence should be addressed. E-mail: thomame@mail.nih.gov.
between diet and BV. A variety of dietary indices has been proposed, yet to date no one indicator has emerged as the gold standard. Indices that have shown utility in understanding the relationship of diet and disease outcomes include measures assessing the degree of conformance to dietary guidelines (13), measures of nutrient density, conceptualized as the concentration of micronutrients consumed per unit energy (14,15), and measures based on differing physiological response to carbohydrate-containing foods (16,17). Therefore, the objective of this paper was to examine the association between BV and several dietary indices among participants in the LSVF.

Participants and Methods

Study population and design. Participants were enrolled in the LSVF between August 1999 and February 2002. Details of this study have been described previously (4,18). Briefly, the study population consisted of nonpregnant women aged 15–44 y presenting for routine care at health clinics in Birmingham, Alabama. Women were ineligible to participate if they were immunocompromised or postmenopausal or had major gynecologic surgery, were receiving antibiotics or immunosuppressive drugs, planned to move within the next 12 mo, or were nonfluent in English. The study was approved by the institutional review boards of the Jefferson County Department Health, the University of Alabama at Birmingham, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Participants were assessed at baseline and followed quarterly for 1 y. At each visit, a pelvic exam and detailed in-person interview were conducted. Vaginal flora was evaluated blinded to clinical data using Nugent Gram-stain criteria and defined as normal (Nugent score: 0–3), intermediate (Nugent score: 4–6), or BV (Nugent score: 7–10) (19). At the second study visit, the 110-item Block98 FFQ was administered (20) by trained interviewers who did not know the Gram-stain results. For administrative reasons, the Block FFQ was discontinued after the first 2005 participants completed their second visit. Demographic and behavioral characteristics did not differ between participants who completed the Block FFQ and those who did not (4).

Dietary assessment. The Block98 FFQ assessed annual intake and dietary data were analyzed by the Block Dietary Data System which uses the USDA Nutrient Database for Standard Reference for macro- and micronutrients (20). The dietary data were reanalyzed in 2010 for additional dietary variables, including mean daily GI, mean daily GL, and the HEI (13). Dietary data with serious errors (i.e. portions consumed were too few or many, identical serving sizes, etc.), as determined by the Block Dietary Data System, were excluded from further analyses (n = 265).

The GI ranks carbohydrate-containing foods according to their effect on blood glucose concentration and is expressed as the percent increase in blood sugar relative to an equivalent quantity of glucose (i.e. GI of glucose = 100) (21). GI values for this analysis were obtained from the Clinical Nutrition Research Center at the University of North Carolina (22) or based on published values (21). Both GI and GL are measures of carbohydrate quality, with the latter also representing quantity of carbohydrate consumed and applied frequently in epidemiologic studies (16). To calculate mean daily GI and GL, carbohydrate, fiber, and GI values were assigned to all food items in the questionnaire. A mean daily GL was calculated by multiplying the GI value of each food by its available carbohydrate (minus fiber) and summed across daily intake of all foods. A mean daily GI was calculated by dividing the mean daily GL by the total available daily carbohydrate and multiplied by 100.

The HEI is a measure of diet quality ranging from 0 to 100 that assesses conformance to federal dietary guidelines, with higher scores indicating greater conformance (13). The HEI was calculated using established methods of assigning scores based on adequacy of consumption of MyPyramid food groups as well as meeting guidelines for sodium, saturated fat, and cholesterol (23). An HEI score >80 implies a “good” diet, an HEI score between 51 and 80 implies a diet that “needs improvement,” and an HEI score <51 implies a “poor” diet (13).

An additional indicator of nutrient density of a diet was assessed using the NNR score (14). The NNR score was calculated from the FFQ as the unweighted arithmetic mean of percent daily values for 15 nutrients (protein, fiber, MUFA, vitamins A, C, D, E, and B-12, thiamin, riboflavin, folate, calcium, iron, zinc, and potassium) per 8370 kJ consumed.

Statistical methods. The association between dietary indices and BV was assessed in cross-sectional and prospective analyses. Demographic and behavioral characteristics expressed as mean ± SD or n (%) across quartiles of dietary indices and correlations of dietary indices with total energy and fat intake were examined. Differences across quartiles were assessed using Kruskal-Wallis tests for continuous variables and chi-square tests for categorical variables. The association between dietary indices and the log odds of BV compared to normal was explored graphically using locally weighted least squares scatterplot smoothing techniques (24). Because intermediate vaginal flora represents a transitory state between normal and BV (25), cross-sectional analyses evaluated the association between different vaginal flora states (normal, intermediate, and BV) and dietary indices using multinomial logistic regression. Based on least squares scatterplot-smoothed curves, dietary indices were modeled as a continuous and a linear spline term for HEI at 70, which corresponds approximately to the 90th percentile of HEI in this population (there was no evidence of nonlinearity for other dietary indices). Models were adjusted for confounding factors chosen a priori, which included age, education, race, cigarette and alcohol use, number of sex partners since the previous visit, douching frequency, hormonal contraceptive use, and BMI. Interaction terms between the number of sex partners and dietary indices were assessed and were not significant. The high correlation of GL with total energy intake and total fat intake precluded adjustment for these variables in the model.

In the prospective analyses, BV status was classified into 4 groups based on BV status at the current visit (visit when FFQ was administered) and the subsequent follow-up visit only and defined as: 1) BV negative at both visits (non-BV maintenance); 2) BV negative at the current visit and positive at the next (BV progression); 3) BV positive at the current visit and negative at the next visit (BV resolution); and 4) BV positive at both visits (BV persistence). Logistic regression models were used to assess the association of dietary indices with BV progression, resolution, and persistence compared to maintenance of non-BV and BV resolution compared to persistence. Models were adjusted for the same confounding factors used in the cross-sectional analysis. A 2-sided P ≤ 0.05 was considered significant in all analyses. Data were analyzed using Stata/SE 10.1 for Windows (Stata).

Results

The sample consisted of predominantly African American (85.5%) women (n = 1735) aged 25.3 ± 6.8 y, education of 12.0 ± 1.8 y, and BMI of 29.7 ± 8.4 kg/m². The majority of women had not used alcohol (47.3%) or smoked since the prior visit (73.4%). The GI, GL, HEI, and NNR were 55.1 ± 3.5, 191.7 ± 88.0, 54.2 ± 11.1, and 88.9 ± 19.1, respectively. The correlation between GI and GL was 0.12 and between HEI and NNR was 0.46. The correlation of GI, GL, HEI, and NNR with total energy intake was 0.06, 0.93, −0.18, and −0.25, and with total fat was 0.14, 0.78, −0.38, and −0.30, respectively. All correlations were significant (P < 0.001).

Quartiles of GI were associated with age, total energy intake, GL, HEI, NNR score, BMI, and alcohol use (Table 1). Quartiles of GL were associated with age, education, race, total energy intake, GI, NNR score, douching frequency, and vaginal flora (Table 1). Quartiles of HEI were associated with age, education, race, total energy intake, GI, GL, HEI, smoking, number of sex partners, and vaginal flora (Table 2).
Cross-sectional analyses assessed the association between dietary indices as continuous variables (per 10-unit increase) and vaginal flora (Table 3). In crude analyses, GL was positively and NNR inversely associated with BV compared to normal vaginal flora. After adjustment, the associations for GL and NNR remained significant ($P = 0.037$ and 0.025, respectively). BV was not associated with HEI values <70; however, HEI values >70 were associated with a reduction in BV that was significant in crude analyses and borderline significant after adjustment ($P = 0.08$). Similar associations for dietary indices were found comparing intermediate to normal flora.

In prospective analyses, only GL was associated with BV progression and persistence (Table 4). The NNR score was significantly associated with BV progression in crude analyses but was borderline significant after adjustment ($P = 0.11$). At HEI scores ≥ 70, HEI was significantly associated with reduced BV persistence in crude analyses, but not after adjustment for confounding factors. All significant estimates showed similar directions of associations to cross-sectional analyses. There was no association between dietary indices and women who resolved compared to those who persisted with or without BV (data not shown).

Discussion

In this study population of predominantly African American women, dietary indices of carbohydrate quality (GI and GL) and overall diet quality (HEI and NNR) were associated with each other and with other demographic factors, including age, education, and race. Mean scores for HEI were below and for

TABLE 1 Characteristics of participants by quartiles of dietary glycemic index (GI) and glycemic load (GL)1

<table>
<thead>
<tr>
<th>Quartiles of dietary GI</th>
<th>1 (low)</th>
<th>2</th>
<th>3</th>
<th>4 (high)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>435</td>
<td>433</td>
<td>434</td>
<td>433</td>
</tr>
<tr>
<td>Age, y</td>
<td>25.6 ± 7.04</td>
<td>24.2 ± 5.98</td>
<td>25.5 ± 6.77</td>
<td>25.9 ± 7.07*</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><12 y</td>
<td>126 (29.0)</td>
<td>145 (33.3)</td>
<td>147 (33.7)</td>
<td>154 (36.0)</td>
</tr>
<tr>
<td>12 y</td>
<td>188 (43.3)</td>
<td>162 (37.7)</td>
<td>166 (38.3)</td>
<td>174 (40.4)</td>
</tr>
<tr>
<td>>12 y</td>
<td>120 (27.7)</td>
<td>125 (28.9)</td>
<td>120 (17.9)</td>
<td>103 (23.7)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>370 (85.7)</td>
<td>370 (85.7)</td>
<td>368 (84.8)</td>
<td>374 (86.3)</td>
</tr>
<tr>
<td>White/other</td>
<td>65 (14.7)</td>
<td>62 (14.4)</td>
<td>66 (15.2)</td>
<td>58 (13.7)</td>
</tr>
<tr>
<td>Energy intake, kJ/d</td>
<td>11,800 ± 5980</td>
<td>12,900 ± 5940</td>
<td>12,500 ± 5100</td>
<td>12,700 ± 5400*</td>
</tr>
<tr>
<td>GI</td>
<td>50.6 ± 1.99</td>
<td>54.1 ± 0.70</td>
<td>56.4 ± 0.66</td>
<td>59.5 ± 1.66*</td>
</tr>
<tr>
<td>GL</td>
<td>177 ± 89.8</td>
<td>194 ± 90.3</td>
<td>195 ± 79.7</td>
<td>201 ± 91.4*</td>
</tr>
<tr>
<td>HEI2</td>
<td>57.2 ± 11.8</td>
<td>54.4 ± 10.8</td>
<td>53.1 ± 10.9</td>
<td>52.1 ± 10.4*</td>
</tr>
<tr>
<td>NNR2 score</td>
<td>97.8 ± 23.1</td>
<td>88.5 ± 16.3</td>
<td>85.6 ± 18.1</td>
<td>83.8 ± 14.8*</td>
</tr>
<tr>
<td>BMI, kg/m2</td>
<td>31.0 ± 8.42</td>
<td>29.6 ± 8.41</td>
<td>29.1 ± 8.62</td>
<td>28.1 ± 7.94*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quartiles of dietary GL</th>
<th>1 (low)</th>
<th>2</th>
<th>3</th>
<th>4 (high)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>434</td>
<td>434</td>
<td>434</td>
<td>434</td>
</tr>
<tr>
<td>Age, y</td>
<td>26.3 ± 6.98</td>
<td>25.6 ± 7.06</td>
<td>25.3 ± 6.69</td>
<td>24.1 ± 6.07*</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><12 y</td>
<td>110 (24.7)</td>
<td>122 (28.5)</td>
<td>163 (37.8)</td>
<td>177 (41.0)*</td>
</tr>
<tr>
<td>12 y</td>
<td>174 (40.6)</td>
<td>177 (41.1)</td>
<td>174 (39.9)</td>
<td>165 (38.2)</td>
</tr>
<tr>
<td>>12 y</td>
<td>149 (34.6)</td>
<td>132 (30.4)</td>
<td>97 (22.4)</td>
<td>90 (20.8)</td>
</tr>
</tbody>
</table>

1 Values are n (%) or means ± SD. Asterisks indicate $P \leq 0.05$ based on Kruskal-Wallis tests for continuous variables and chi-square tests for categorical variables.

2 HEI, Healthy Eating Index; NNR, Naturally Nutrient Rich.

3 Since the last visit.

Bacterial vaginosis and dietary indices 3 of 7
GI and GL were above means found in other U.S.-based sample populations (63.9, 50.0, and 100.2, respectively) (23,26), indicating a poorer diet among women in our study. A more healthful diet, as indicated by GL, NNR, and HEI indicating 70% conformance to dietary guidelines, was associated with a lower likelihood of BV among those with BV. In particular, GL, but not GI, was consistently associated with BV prevalence, progression, and persistence. Both the complexity of the human diet.

These results may be important for elucidating the etiology of BV. In particular, GL, but not GI, was consistently associated with BV prevalence, progression, and persistence. Both the source and amount of carbohydrate can influence an individual’s glycemic response to a food or meal (27). Chronic exposure to postprandial rises in glucose may have adverse health effects and have been linked to diabetes, coronary heart disease, and cancer (28–35). Continued exposures to postprandial hyperglycemia

4 of 7

Thoma et al.
may trigger oxidative damage through a reduction in plasma antioxidant defenses and increased inflammation due to free radical production (36,37). It is also known that women with diabetes, especially those with poor glycemic control, are more likely to be affected by genital tract infections (38,39). We could not distinguish the independent effects of GL and total energy or fat intake on BV given the high correlation between these variables in this study. Nevertheless, the biologic mechanism may be similar, given that even large amounts of low-GI foods may result in high spikes in postprandial glucose (40). Thus, it is plausible that chronic exposure to high-GL, energy-dense diets may affect host response to bacterial colonization and, in particular, the pathogenesis of BV through oxidative stress and impaired immune function.

Alternatively, diet may influence the microbial population of mucosal surfaces in the gastrointestinal and reproductive tracts. Studies conducted in mice suggest dietary factors, in particular the pathogenesis of BV through oxidative stress and impaired immune function.

Table 3: Crude and adjusted OR for the relationship between dietary indices and vaginal flora assessed by Nugent Gram-stain criteria

<table>
<thead>
<tr>
<th>Dietary index</th>
<th>Intermediate flora (Nugent: 4–6)</th>
<th></th>
<th>BV (Nugent: 7–10)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cOR 95% CI</td>
<td>aOR 95% CI</td>
<td>cOR 95% CI</td>
<td>aOR 95% CI</td>
</tr>
<tr>
<td>Daily glycemic index (GI)</td>
<td>1.28 0.89–1.85</td>
<td>1.26 0.86–1.87</td>
<td>0.92 0.68–1.25</td>
<td>0.99 0.71–1.38</td>
</tr>
<tr>
<td>Daily glycemic load (GL)</td>
<td>1.02 1.00–1.03</td>
<td>1.01 1.00–1.03</td>
<td>1.02 1.01–1.03</td>
<td>1.01 1.00–1.03</td>
</tr>
<tr>
<td>Healthy eating index (HEI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><70</td>
<td>1.01 0.89–1.15</td>
<td>1.04 0.91–1.20</td>
<td>0.94 0.84–1.05</td>
<td>0.99 0.88–1.11</td>
</tr>
<tr>
<td>>70</td>
<td>0.44 0.19–1.02</td>
<td>0.49 0.21–1.15</td>
<td>0.38 0.19–0.78</td>
<td>0.48 0.23–1.04</td>
</tr>
<tr>
<td>Naturally Nutrient Rich (NNR) score</td>
<td>0.89 0.83–0.95</td>
<td>0.90 0.84–0.97</td>
<td>0.93 0.88–0.98</td>
<td>0.93 0.88–0.99</td>
</tr>
</tbody>
</table>

1 Change in odds of intermediate flora or BV compared to normal flora (Nugent: 0–3) per 10-unit increase in corresponding dietary index value.
2 n = 1719 in crude analyses and n = 1644 in adjusted analyses. cOR, crude OR; aOR, adjusted OR.
3 Models adjusted for age, race, education, cigarette smoking, alcohol use, BMI, douching frequency, hormonal contraceptive use, and number of sex partners.
4 Spline term with node at 70; OR correspond to the slopes < and > HEI = 70.

Table 4: Crude OR (cOR) and adjusted OR (aOR) for the relationship between dietary indices and BV progression and persistence

<table>
<thead>
<tr>
<th>Dietary index</th>
<th>BV progression</th>
<th></th>
<th>BV persistence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cOR 95% CI</td>
<td>aOR 95% CI</td>
<td>cOR 95% CI</td>
<td>aOR 95% CI</td>
</tr>
<tr>
<td>Daily glycemic index (GI)</td>
<td>0.98 0.60–1.61</td>
<td>1.03 0.61–1.75</td>
<td>0.82 0.58–1.16</td>
<td>0.99 0.67–1.46</td>
</tr>
<tr>
<td>Daily glycemic load (GL)</td>
<td>1.03 1.01–1.05</td>
<td>1.03 1.00–1.05</td>
<td>1.02 1.01–1.04</td>
<td>1.02 1.01–1.04</td>
</tr>
<tr>
<td>Healthy Eating Index (HEI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><70</td>
<td>0.88 0.74–1.04</td>
<td>0.93 0.77–1.13</td>
<td>0.91 0.80–1.04</td>
<td>0.94 0.82–1.08</td>
</tr>
<tr>
<td>>70</td>
<td>0.58 0.16–2.13</td>
<td>0.84 0.24–2.95</td>
<td>0.34 0.12–0.97</td>
<td>0.51 0.17–1.50</td>
</tr>
<tr>
<td>Naturally Nutrient Rich (NNR) score</td>
<td>0.90 0.82–0.99</td>
<td>0.92 0.83–1.02</td>
<td>0.95 0.89–1.01</td>
<td>0.94 0.87–1.01</td>
</tr>
</tbody>
</table>

1 Change in odds of BV progression or persistence compared to non-BV maintenance per 10-unit increase in corresponding dietary index value.
2 n = 753 in crude analyses and n = 738 in adjusted analyses.
3 n = 976 in crude analyses and n = 962 in adjusted analyses.
4 Models adjusted for age, race, education, cigarette smoking, alcohol use, BMI, douching frequency, hormonal contraceptive use, and number of sex partners.
5 Spline term with node at 70; OR correspond to the slopes < and > HEI = 70.
present if women who consume a particular diet also exhibit other health-related behaviors that increase their risk of BV, such as riskier sex, personal hygiene, or physical activity. To account for some of these factors, we adjusted for number of sex partners and douching frequency and found no change in inference. We controlled for BMI, but physical activity was not measured in this study and may also confound the association between BV and GL. We are not aware of any studies that have assessed the relationship between physical activity and BV and think this is an important area for future study.

Finally, it is generally recognized that associations between dietary indices and disease may be sensitive to slight differences in how those indices are calculated (11). The merits of the GI concept have been debated, without consensus, since its introduction, particularly owing to technical limitations in its calculation (48). A criticism of the GI is that the values can be imprecise, because they are significantly altered by factors including processing, ripeness, and cooking methods and that it does not account for the effect of carbohydrate quantity on the glycemic response. GL addresses this latter limitation by quantifying the overall glycemic effect of the diet but is still limited by imprecision from its calculation based on the GL. Output from the Block98 FFQ did not enable us to calculate an updated HEI (HEI-2005) in our study. In addition, the most currently proposed nutrient density measure is the Nutrient Rich Foods index (49); however, there are numerous nutrient density measures with no clear gold standard. Calculation of the Nutrient Rich Foods index required information on added sugars, which was not provided in the Block98 FFQ analysis. Therefore, we calculated another measure of nutrient density, the NNR, to assess this concept in our study (14). Despite these limitations, the consistency of associations across several dietary indices and vaginal flora measures demonstrates the robustness of our findings.

Our results suggest that BV is associated with dietary indices. Because this study included primarily African American women in the South, epidemiologic studies should be conducted to explore whether this relationship is consistent in other populations. Future studies investigating dietary and biochemical indicators of nutritional status, physical activity, and the role of diet in changes to gut and vaginal microbiome may further elucidate biologic mechanisms for these findings.

Acknowledgments
W.A., M.K., Y.N., and J.S. designed research; W.A., Y.N., and J.S. conducted research; M.E.T. analyzed data; M.E.T., M.K., A.R., T.N., Y.N., and J.S. wrote the paper; and M.E.T. had primary responsibility for final content. All authors read and approved the final manuscript.

Literature Cited
22. UNC School of Public Health-Diet Physical Activity and Body Composition [Internet]. The University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Nutrition Obesity Research Center; [updated 2011 March 14; cited 2011 Apr 8]. Available from: www.sph.unc.edu/cnrc/core_b.html

